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Abstract

Let (X1,Y1),...,(Xn,Y,) be an independent random sample from a bivariate
population with distribution H. The stochastic variables X and Y are assumed
to be (positively) associated in some way. To incorporate this assumption,
various mathematical-statistical definitions can be used. We prefer the concept
of (positive) quadrant dependence. This thesis contains various methods for
estimating the distribution function H(z,y).

Two semiparametric methods are developed and a nonparametric method
is discussed. The results are not very promising: though those of the semi-
parametric methods display various similarities, they are considerably different.
This might suggest that samples of size 50 are too small to arrive at acceptable
estimates, unless restrictive assumptions are imposed.
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Chapter 1

Introduction

Given the outcome (x;,y;), (i = 1,...,n) of an independent random sample
from a bivariate distribution, satisfying some assumption of (positive) depen-
dence, we develop semi- and nonparametric estimates of this bivariate distribu-
tion and also of the corresponding marginals.

In this chapter an introduction and a short explanation of aims are given
and followed by a description of the data set we shall use for illustrating the
theory. In Chapter 2 we explain some preparations for making inferences about
bivariate distributions. In Chapter 3 semiparametric techniques are presented.
Chapter 4 is concerned with nonparametric methods. To apply the theory the
computer program Matlab from The Mathworks—company is used.

1.1 The picture quality of video fragments

To illustrate our methods we shall use a data set of the Dutch telecommu-
nications company “Koninklijke PTT Nederland” (KPN). This data set was
obtained from Fortuin et al.[7].

Figure 1.1: The computer-based scores versus the human-based scores

The data set consisted of n = 48 digitally transmitted fragments of videofilm
of different quality. Each fragment was characterized by two quality measure-
ment scores, one based on mechanical recording, the other on human obser-
vation. One of the purposes is to investigate whether there is some kind of
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correlation between these two scoring methods. Each video fragment had a
duration between 124 and 127 half seconds. At each half second the picture
quality of the fragment was measured by an instrument (for which the scores
are assumed to be very precise). The quality was scored as one of the integers
0,...,7 and was stored as a binary number with three digits. A score of 0 de-
notes a very good quality, a score of 7 denotes very bad quality. If the 124 to
127 quality-scores for each half second of the fragment are averaged, we obtain
the so-called technical quality, which is a number in the interval [0, 7].

Each video fragment was submitted to a panel of 32 judges. They scored
each fragment as an integer between 1 and 5, where 1 denotes very bad quality,
and 5 very good quality. In the data set available to us only the averages of
the 32 scores for each fragment were reported. This is a pity because we would
have liked to study the inter-observer reliability.

As the technical score is small if the quality is high and the human score
behaves in the oppostite manner, we shall apply the transformation

7 — technical score human score — 1
T = and y= ———
7 4

to our bivariate data set. The distribution of the underlying random variables X

and Y on [0,1] x [0, 1] is such that positive dependence seems to be reasonable.

A plot of these quality measures is given in Figure 1.1. Although the scores

given by the technical instrument lie in principle between 0 and 7, the lowest

average score observed was about 3.5 and x was never smaller than % In spite

of the fact that X and Y are the averages of respectively 124 to 127 and 32

integer-valued random variables, and therefore discrete, we shall continue by

regarding X and Y as continuous random variables. This assumption is made
for the sake of convenience.



Chapter 2

Preparations

In this chapter, we shall look at the bivariate normal distribution which is often
used for making (parametric) inferences about bivariate distributions. This is
followed by a description of the concept of dependence, with special interest to
the concept of positive quadrant dependence. Some methods for testing inde-
pendence and positive quadrant dependence, using rank correlation coefficients,
are evaluated.

2.1 The bivariate normal distribution

Inferences about bivariate distributions are usually based on the assumption of
bivariate normality.

Definition 2.1 (Bivariate normal distribution.) The bivariate normal dis-
tribution with EX = &, EY =1, Var(X) = 02, Var(Y) = 72, Cov(X,Y) = o7p

2
is denoted by N> (( 8 ) , { UUTP UT7‘2/) }) Its density is given by

ey = — L s ) () () (452)7]

This form of the density appeared from the work of Galton who at the end of
the nineteenth century studied natural inheritance. Galton presented the data
on heights of parents (the mid-parent height) and adult children in the form of
a bivariate frequency plot. It is interesting from a causality viewpoint that he
plotted the height of children along the x-axis, and not along the y-axis as math-
ematicians would prefer to do. He described some peculiar features of his data,
such as the phenomenon of reversion, which was later referred to as regression
to the mean, and various types of correlation. Furthermore, Galton noted that
the conditional means E(Y|X = z) and E(X|Y = y) seemed to follow straight
lines, that the scatter of points is homoscedastic, and that the equiprobability
contours are elliptical. With the use of the Cambridge mathematician Dickson,
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he derived the formula of the bivariate normal distribution which complies with
his observations (as can be found in Rao[24]).

Very often the researcher assumes bivariate normality, unless a plot shows
that this is clearly inappropiate. The approach based on bivariate normality
has the advantage of wide applicability and simplicity. Most of the times this
approach gives good results, especially when inferences have to be made about
the mean and variance of the actual distribution. Most data, however, are not
really generated according to a bivariate normal distribution. Working with
the assumption of bivariate normality while it is invalid, may lead to biased
opinions. This often leads to the belief that the Galtonian approach has to be
replaced by something less restrictive and more complicated.

On the other hand, the main task of the statistician is not to use methods
with such complexity and detail that only another statistician can understand
his inferences. The statistician has to aim at reasonable results using methods
which can be explained to the clients. That is why the possibility of making
parametric assumptions will not be ignored. Our purpose is to make infer-
ences on the basis of the outcome of an (independent) random sample from the
bivariate distribution £(X,Y") with distribution function

H(z,y) =P(X <,Y <vy) (2.2)
d densit
and density 52H($ y)
h(%y) = T&y (2-3)

unknown. We do not assume that H(x,y) is close to a bivariate normal distri-
bution. Yet we do assume that X and Y are (positively) correlated in the way
to be specified in Section 2.2.

For making inferences based on the outcome of an independent random sam-
ple, various approaches have been considered. They can be classified according
to whether the approach is parametric, semiparametric, or nonparametric. If
normality assumptions have to be made then we, certainly, would have used
the usual approach of Galton, elaborated upon by Pearson, Fisher, Rao, Ander-
son, etcetera. As such assumptions are not realistic for our data set, we shall
elaborate on the semiparametric and, ultimately, the nonparametric approach.

2.2 Positive quadrant dependence
The two random variables X and Y are said to be independent if

H(z,y) = H(x,00)H(c0,y) (—00 < z,y < 00) (2.4)

If they are not independent then they are dependent. Usually they display
a specific kind of systematic dependence, e.g. that the ‘correlation’; or ‘associ-
ation’, is positive in some way. There are many ways to describe that there is
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a positive correlation between stochastic variables X and Y. A natural way, of
course, is to use the correlation coefficient

Cov(X,Y)
v VarXVarY

If the distribution of (X,Y") is bivariate normal then p(X,Y’) corresponds to
the parameter p in Definition 2.1. For the nonparametric analogue of positive
correlation, we make use of positive quadrant dependence (Lehmann[16]). This
concept was called positive stochastic correlation in Schaafsma[27]. There are
some (nonparametric) measures for positive dependence (Kendall’s 7, Spear-
man’s p, etc.; see Section 2.3), but in this work we will mainly focus on the
concept of positive quadrant dependence (in short PQD). The pair (X,Y) is
said to be PQD if the probability that they are simultaneously large (or small)
is at least as it would have been in the case of independence[21], more precisely

p(X,Y) = (2.5)

Definition 2.2 (Positive quadrant dependence.) L£(X,Y) is said to be pos-
itively quadrant dependent if

H(z,y) > H(x,00) - H(oo,y) Va,y (2.6)

There is strict positive quadrant dependence if inequality holds for at least
one point (x,y). The stochastic pair (X,Y") is negatively quadrant dependent
if (2.6) holds with the ‘>’-sign replaced by a ‘<’-sign.

We see that PQD is indeed a nonparametric concept since for all (X,Y) PQD
and for all continuous increasing functions ¢ and y we have that the distribu-
tion L(o(X), x(Y)) is PQD. A concept slightly stronger than PQD is positive
regression dependence or, more specifically, stochastic positive dependence of Y
on X (Lehmann[15]).

Definition 2.3 (Stochastic positive dependence.) LetY, denote a random
variable which has the conditional distribution of Y given x as distribution func-
tion. There is stochastic positive dependence of Y on X if

Ve<az': P(Ya<2)>P(Yp<2z) (—0o<z<oo;—00<z<1z <o)
Lemma 2.4 The following conditions on L(X,Y) are equivalent
(i) L(X,Y) is PQD
(i) P(X <2,Y <y)P(X >2,Y >y) >P(X <z,Y > y)P(X >z,Y <)

(iii) Cov(p(X),x(Y)) > 0 for all pairs (¢, x) of nondecreasing functions such
that o(x) and x(x) have finite second moments

Proof. See Appendix A.
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2.3 Testing independence

The assumption of PQD should not be made unless it is not violated by the data.
That is why we test the hypothesis that PQD holds. Usually one starts out by
testing the hypothesis Hy that X and Y are independent. Having rejected Hy,
one will proceed by testing H : L(X,Y) is PQD. This hypothesis should, of
course, be maintained unless it is rejected at a reasonable level, e.g. a = 0.05.
There are many tests for testing the hypothesis Hy of independence against
some form of positive dependence([12], [15]).

In his book [12], Kendall describes how to measure the degree of correspon-
dence between variables, using ranks. His starting point is not the theoretical
distribution £(X,Y") (this is unknown and will always remain unknown though it
can be ‘approximated’ or ‘estimated’) but the empirical data (z;,y;)i =1,...,n.
When individuals are arranged according to some quality, they are said to be
ranked. The arrangement as a whole is called a ranking. We write r; and s; to
denote the ranks of x; and y; respectively (i = 1,...,n). For measuring the de-
gree of correspondence, or the intensity of rank correlation, various coefficients
have been proposed.

These coefficients have the following properties:

(i) if the agreement between the rankings is perfect, the coefficient should be
+1, indicating perfect positive correlation

(ii) if the disagreement between the rankings is perfect, the coefficient should
be —1, indicating perfect negative correlation

(iii) for other arrangements, the coefficient should lie between these limiting
values and, in some intuitive sense, be increasing if the agreement between
the ranks is increasing

One of the earliest and most widely used methods of correlation when data
are in the form of ranks is due to Spearman(1904). He proposed his rank-order
correlation coefficient, which we shall denote by pg. This is the product-moment
correlation coefficient between R and S (the ‘rank-representations’ of X and Y).
When we denote r; — s; with d;;, we can compute Spearman’s p using

6> d%

n(n? —1) (2.7)

ps =

To test the statistical significance of this coefficient we can use the following
asymptotic test for the null hypothesis of independence

t=psy/(n=2)/(1= p) ~ tus (28)

This test (Lindeman et al.[17], p. 66) provides satisfactory approximations when
n > 10. A useful observation is that ps has ezact mean 0 and variance —, if

the null hypothesis is true. (Note for n = 2 that pg is either +1 or —1). The

approximation based on referring pg to N(0, ﬁ) is almost the same in practice
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as that based on (2.8). Since in our case n = 48 and the outcome of the test is
t = 8.73, approximation (2.8) obviously suffices.

Another useful rank correlation coefficient is Kendall’s 7, proposed in 1948.
This coeflicient is based on the extent of agreement between judges in their
relative orderings of all possible pairs of individuals. An agreement occurs when
both orderings are the same for a pair, the pair of judges can then be said
to be concordant. Kendall’s 7 can be computed by counting the number of
concordances (n.) and the number of discordances (nq) among all possible pairs,
and dividing by the number of pairs,

Ne — Ng 4dn,
T B nln— 1) 1 (2.9)
The statistical significance of 7 can be tested by computing the variance of 7
which under Hj is equal to

2(2
var(7) = 22n+5)
In(n—1)
The test can then be computed as
PP (2.10)
var(7)

which has, approximately, the standard normal distribution (when there are no
ties) under the null hypothesis of independence (Lindeman et al.[17], p. 69).
Again, since n = 48 and z = 8.69, this approximation also suffices.

An easy way to display 7 and pg (and other coefficients) is by using the
general correlation coefficient

o 2 aibij

\/ Za’?j Zb?j

For every pair of individuals an z-score, denoted by a;; will be allocated, subject
only to the conditions a;; = —a;; and a; = 0. Simultaneously, y-scores will be
allocated and denoted by b;;. Note that Pearson’s product-moment correlation-

coefficient
- d>(zi —2)(yi —9)
V(@i — )2 3y — 9)?

arises if one takes a;; = z; — x; and b;; = y; — y,. Kendall’s 7, is based on
J j J j )

{ +1 Ti<Tj
Qi =

(2.11)

(2.12)

-1 7r>r
b — +1 s <sj
E -1 s;>s;

and Spearman’s p is obtained if

Qi =T5 — T4
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bij =S8; — 8

These representations of 7 and pg only hold when there are no ties, i.e.
no z’s or y’s with identical values. Generalizations are available to determine
representations for the coefficients when observations are tied. However, we only
want to get a general idea about the correspondence between X and Y. Since
almost no ties are present in the data at hand, the possibility of ties is ignored.

Kendall and, in The Netherlands, Van Dantzig, Terpstra, Smid, Ruymgaart,
and others have studied the distribution of and the relation between 7 (and pg),
both in the case of stochastic independence and in the case of dependence. Nor-
mal approximations to the distribution of 7 and pg under Hy (with continuity
correction) are very accurate if n is large, say n > 10. Descriptions of the
relation between 7 and pg exist, e.g.

31 1 1,
S <pg<—d4rT—— 2.1
27‘ 2_ps_2—|—7' 27‘ (2.13)

for large values of n (see Kendall[12], p.13). This ‘interval’ for pg should hold
when 7 > 0.

We have computed our 7 and pg and tested the hypothesis of no indepen-
dence. For our data set about video fragments, we obtained

T = 0.867
ps = 0.790

In both cases the hypothesis of independence is rejected at ‘any’ level of sig-
nificance. We also checked the inequalities in (2.13). It follows that pg lies in
the interval [0.80,0.99]. This is not the case, probably because of the presence
of tied observations in our data.

2.4 Testing PQD

The assumption of positive quadrant dependence should not be made if it is in
clear conflict with the data. To test the hypothesis that £(X,Y)is PQD we
can consider all hypotheses of the form

Hyp :P(X <2,Y <y) >P(X <2)P(Y <y) (2.14)

Note that H = ﬂx Y H,. To test H;, at significance level « it is natural to
use Fisher’s exact test. For such (z,y) € R? the corresponding 2 x 2 table

a=#{ilz; <z,y: <y}, b=#A{ilr; <wz oy >y}
c=#{ilri > 2,y <y}, d=F#{ilz; >z,y: >y}

is composed. The hypothesis (2.14) is rejected if and only if
ad — be

T(x,y) =
\/ﬁ(a +¢)(b+d)(a+b)(c+d)

< —Ug (2.15)
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where u, = ®~!(1—a) is the upper a point of the standard-normal distribution.

Our hypothesis H holds iff H, , holds for all pairs (x,y). By applying (2.15)
to all combinations of (z;, ;) we perform n? tests, each approximately of level
a. The overall probability of rejecting H, ,, for some (x,y), if H is true, depends
on L(X,Y) and is difficult to determine. One might study the distribution of
min, ,T'(z,y) and study whether independence is some sort of ‘least favorable’
situation. This study goes beyond the aims of this work and will not be done.

The present data is such that we make the assumption that X and Y are
positively associated. For the data set about video fragments none of the H,
is rejected at significance levels above %%.



Chapter 3

Estimating the bivariate
density semiparametrically

This chapter is about estimating a bivariate density using semiparametric tech-
niques. This means that we shall not make the parametric assumption that
our bivariate distribution £(X,Y") is an element from some parametric family
P = {Py | 0 € ©}. For the specification of the dependence structure, however,
one parameter will be worked with. Two approaches, one using the bivariate
normal distribution, and the other using the bivariate exponential distribution,
are considered.

3.1 Introduction

Our aim is to estimate the bivariate density h(z,y) of (X1,Y1) on [0,1] x [0, 1]
on the basis of the outcome (z;,y;) (i =1,...,n) of a random sample and also
to estimate the corresponding distribution function H(z,y). For the marginal
distributions of X and Y we use the following notations: F(z) := H(x,00) =
P(X <z,Y <) =P(X <z) and G(y) := H(co,y). The marginal densities
are denoted by f(z) = F'(x) and g(y) = G'(y). Tt is assumed that £(X,Y) is
(strictly) PQD, see Section 2.2. The estimation of the marginal distributions
of X and Y will be done nonparametrically. For modelling the dependence
between X and Y the parametric assumption will be used in Section 3.3 that
(for some p > 0)

SUFO) ) _ o ((O0) [1 s
e 5-iaoy ) =2 ((0) [ 5 1 (3
It is trivial that F(X) ~ U(0,1) and G(Y') ~ U(0,1) and, hence, the distribu-
tions of @71 (F(X)) and ®~}(G(Y)) are N(0,1). The dependence is modelled

efficiently by only one parameter p. This is dangerous because reality will al-
most always be different. If one feels forced to reject the assumption of bivariate

11
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normality then it is difficult to decide upon something else. NEvertheless, in
Section 3.4 a alternative approach is considered. This indicates that many pos-
sibilities exist, but that it is difficult to choose.

The value of p will be estimated from the data. If the dependence is not of
the form specified by (3.1), we shall make systematic errors. The data, plotted
in Figure 1.1 are such that bivariate normality is not an acceptable assumption.
We hope that the more flexible semiparametric model (3.1) will provide useful
results.

3.2 Estimating the marginal distributions

For estimating the marginal distribution functions F' and G we use two different
approaches. The first and simplest approach is to use the empirical marginals
(see Grimmett and Stirzaker[9], p. 387) with distribution function

F(m):%#{ﬂxigx} 0<z<l1 (3.2)

For our data the empirical distribution function G estimating G can be found
in the same way. Figure 3.1 displays the empirical distribution functions for the
two variables of our data set. Note that F and G are discontinuous functions
displaying jumps % in the order statistics and being constant elsewhere.

Empiric distributions of X and Y
T T T

1
Solid: w.rt.x |

Dashed: w.rt.y
0.9 q
0.8 q
0.7 q
0.6 q
0.5 J B
1
0.4 71 ~
0.3 ! - 4
|
02t e i
e
0.1 | 4
r
_ i
0 .
0 0.1 0.2 0.3 0.4 1

Figure 3.1: Empirical distributions of X and Y

The second approach is based on the idea that the true distribution functions
F and G will be continuous and even differentiable with derivatives f = F’ and
g = G'. The theory of nonparametric density estimates can then be applied (see
Silverman([30]). We shall use the new and somewhat peculiar method described
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in De Bruin and Schaafsma[5]. This semi-Bayesian method provides a smooth
estimate of the inverse of the distribution of a (univariate) random variable. Let
T[], -, denote the ordered outcomes of the sample from the distribution
F. For the support of X we write [2[g), Z[,+1)] and we assume that the values
z[o] and [,41] have been prescribed. The method provides

n+1

B =Sy ("7 ) (33)
1=0

where B,Sl)(p) is an estimate of B (p) = F~1(p). Analogously, B is con-

structed to estimate G~1(p). For our data set the observations are presented as
crosses and circles, and the two estimated distribution functions, F= Br(ll) -t
and G = B,(f) _1, are given by the dotted curves in Figure 3.2. To start with,
the choice [z]o], Z[n41)]=[0, 1] is made (see Section 1.1). We see that these results
are nice and smooth, but we also see that some ‘tails’ are unsatisfactorily large,
especially the right-hand tail of Y and the left-hand tail of X. Improvement is
possible by using a more precise specification of the supports which, of course,
should extend beyond [z[1}, [n]] X [y[1], Y[nj]- De Bruin and Schaafsma[5] give
various methods for specifying the supports, depending on whether the support
must be finite or not. One of the suggestions is to use o) = x11] — (22 — o))
and [, 41] = T[] — (T[] — Z[p—1)). For X this provides [0.4755,0.9860], but for
Y the interval [—0.0160, 0.8438] obtained will be modified by taking 0 as the left
boundary of the support. The estimates F and G for the marginal distribution
functions provided by this procedure are given by the solid curves in Figure 3.2.
It is obvious that both methods for estimation differ very little in the ‘middle’
of the distributions. The modified method is preferred because it seems more
accurate.

T T
x: sample of X

0.9 ©:sampleofY

solid: sophisticated supports
0.8 dotted: supports [0,1]

071
0.6
051
041
031 ©

02 Z

Figure 3.2: Estimates of F'(z) and G(Y') based on BY and B{Y



CHAPTER 3. ESTIMATING THE BIVARIATE DENSITY SEMIPARAMETRICALLY14

3.3 Estimating £(X,Y) using the normal distri-
bution
Formula (3.1) displays how we will model the dependence between X and Y in a

parametric way. We shall now construct the estimate p for the product-moment
correlation coefficient p by using the transformations

(3, 9:) = (uiy0i) = (@71 (F(2:)), 27 (G(wi))) (i =1,...,m) (34)
and computing the sample covariance providing
=1y (35)
= — U;V; .
"7 i=1

As the points with smallest and largest ranks play a very important role
in this product-moment correlation coefficient, it is pertinent to use the most
appropriate supports. If this is done as indicated, we find p = 0.4894.

The distribution £(X,Y) will be estimated by computing the distribution

(3)-(&a)) (36)
c(2)=m((9)]12]) -

Note that it is not obligatory to take for F and G the estimated distribution
functions of the previous section. As the joint density of (Z1, Z2) is given by

of

where

1 1 2 . 2
S = {2 9 _
plonz) = s o | (B B)] 69)

the estimated joint distribution of X and Y has distribution function ﬁn(z, y) =

2N (F(2)) @7 (G(y)) )
—1 w2 2puv+0?
. e[_ 2(1-p2) {u 2puvt }} dvdu (39)

2w/ 1 — p?

and density h, (z,y) =

g T E@ W)
—1 2 N 2
oz {w-20wot®}] 4 g

1
2my/1 — p2 0zdy
L s {@ E@)?—2p@  (F@)@ (G +H@ (Gw)* )]

2m/1 — p?
0

—1/F 9 1,4
52 (@ (F(z)))a—y@ (G(y))) (3.10)
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_ 1 e[ﬁ{@*l(ﬁ(w)))?—zﬁ(@*l(F(z)))(‘ifl(G(y)))+(¢’1(©(y)))2}]
V1-7p2
e BE@P+ECON] f(1)4(x) (3.11)

0.4

y-axis X—axis

Figure 3.3: Estimate of the bivariate density using the N> distribution

Here, F and G are smooth estimators of F and G, not necessarily equal to the
earlier mentioned estimators F' and G. Expression (3.11) is complex but suitable
for computation. The precise shape of R, (z,y) depends to a considerable extent
on the approach we use for estimating the marginal distributions F' and G.

To compute the estimates of F, GG, f and g for the data set of video fragments,
the Bernstein polynomial estimates for F'~! and G~! were computed in 1600
equidistant point on [0, 1]. By linear interpolation and numerical differentiation,
the estimates for F' and G and f and g were computed. These estimates are
sufficiently accurate for the calculation of h,,. A 3d-surface plot of this estimated
bivariate density is given in Figure 3.3.

Figure 3.4 is the ‘view from above’ of Figure 3.3. When the points with the
same color are connected, one gets the euquiprobability curves. These are the
level curves corresponding to a certain value of izn(x, y). The probability that
an observation (z,y) lies inside an area I is, of course, [} hn(x,y)dzdy. For the

level curves corresponding to by = 1.3,5.0,8.2, and 13.8, these probabilities are
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.4: Height plot corresponding to Figure 3.3

93%, 37%, 20%, and 6.8%, respectively. The corresponding observed frequencies
(see Figure 1.1) are 88%, 48%, 27%, and 13%.

As can be seen from these plots, our estimate for the bivariate density has
a shape more detailed and sophisticated than when the density is estimated
by a bivariate normal one, but still has the nice smoothness property. It is
an interesting question whether the bimodality is real or apparent. For that
purpose the statistical accuracy of the estimates should be studied. This goes
beyond the present work.

3.4 Estimating £(X,Y) using the bivariate expo-
nential distribution

Similarly to the previous section, the bivariate density is estimated using a
parametrisation only for the correlation. This time a transformation to expo-
nentially distributed variables is used. We define the following mapping

(i) — (ug,v;) = (—log(l — a;), —log(l —y;)) (i=1,...,n) (3.12)
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The u; and v; can be considered as taken from random variables U and V', both
having the standard-exponential density with mean and variance one.
The distribution £(X,Y") will be estimated by computing the distribution

X\ [ F'1-eY)

(7)=(60-o)) 1
where the joint distribution of (U,V), denoted with Hy,y, is one with both
marginals exponentially (mean 1) distributed. There are several bivariate dis-
tributions with such exponential marginals, see for example Gupta et al.[10].
We have chosen to work with the bivariate exponential distribution introduced
by Marshall and Olkin[19] (see also [2], [4] and [10]). This is one of the most
frequently used bivariate exponential distributions, and implying it also takes
the PQD into account (see section 4.2). The distribution has the form

of

HU,V(U7 ’U) — e(—klu—kgv—)\lgmax(u,v)) (314)

and is called the BVE(A1, A2, A\12) distribution. The marginal distributions are
U ~ Exp(A1 + A12) and V' ~ Exp(A2 + A12) (Basu[2]). The correlation coefhi-
cient is equal to p = A12/(A1 + A2 + A12)(Brady et al.[4]). Since U and V are
constructed such that they both follow an exponential distribution with mean 1,
we have that Ay = Aa =1 — A15. The correlation coefficient p can be estimated
from the data and therefore we can use the estimates

. 25

and

A=A\ =
For our data p = 0.62, 5\1 = 5\2 = 0.23, and 5\12 = 0.77 . The joint density of
(U,V) is given by

(1 + /\1)e[f/\luf/\lvf(lf/\l)max(u,v)] u,v > 0

elsewhere (3.15)

and (when 0 < Ay < 1) this is indeed a bivariatg probaAbility distribution func-
tion. So the estimated distribution function of X and Y is

—log(1—F(x)) —log(1—-G(y))

Hay) = [ [ g e k)
—%max(u,v)} dudv (3.16)

with density h(z,y) = %{;yf{(x, y) =

_ 4 {exp {1 - 2(—10g(1 —P(x) — log(1 — G(y)) — 124:),5'
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Figure 3.5: Estimated bivariate density using the bivariate exponential distri-
bution

max(—log(1 — F(2)), ~log(1 — G(y))) }| a% (~log(1 = F(2)))

az( log(1 - G(y))) (3.17)
= ) o { T loB(1 - F(o) ~ o1 - G) - T
ma(—log(1 — F(),-lox(1 - )] - L E- T 19

Just like in the previous section, it is assumed that F and G are smooth
estimators for F' and G. Simultaneously to the approach in that section, we
have calculated F, G, f, g, and p.

In Figure 3.5 the 3d-surface plot of our estimated bivariate density is given.
This is again a nice, smooth density, but with more peaks than in Figure
3.3. Figure 3.6 displays the ‘overview’ corresponding to Figure 3.5. Again, we
have calculated some estimated probabilities corresponding to some equiprob-
ability curves. The probabilities corresponding to the curves for respectively
h =1.4,3.2,5.0, and 7.3 are respectively 75%, 37%, 14%, and 2.8%. The corre-
sponding frequencies (see Figure 1.1) are 79%, 44%, 17%, and 2.1%.
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Figure 3.6: Height plot corresponding to Figure 3.5

3.5 Conclusions

The methods described in Sections 3.3 and 3.4 both have only one parameter
on which the inferences are dependent. Although the results of both methods
have some similarities, they are, unfortunately, quite different. The estimated
probabilities that an observation lies inside some equiprobability curve also dif-
fers much from observed frequencies. It seems that the family of models that
is used has a very strong influence on the inference. One might want to reduce
this problem by introducing more parameters, but this results into a paramet-
ric, complex model. The two methods shall give more similar results when the
sample size is larger than that we used (n = 48).



Chapter 4

Nonparametric dependence
concepts

In this chapter some nonparametric extensions are considered. Nonparametric
inferences are inferences for which the family of distributions is the family of all
possible probability distributions.

One estimate for the bivariate distribution function is easily obtained: use
the (bivariate) empirical distribution function

1
H(z,y) = —#lilei<w i<y} 0<zy<l (4.1)

For our data set about video fragments, the bivariate empirical distribution
function is displayed in Figure (4.1). Nonparametric density estimates can be
obtained along the lines described in the literature: kernel methods, wavelets,
etc.

In De Bruin and Schaafsma[5], a method is derived to obtain an estimator
for the quantile function F'~!(x) in the univariate case. Attempts to make a
2-dimensional generalization failed. In this chapter we discuss some relevant
literature which, hopefully, will result in something useful in the future.

4.1 Concepts describing bivariate positive de-
pendence

In this master thesis, we mainly focused on positive quadrant dependence to
describe some sort of positive relationship between two variables, since this con-
cept appeared to us to be the ‘most natural’ way to describe such dependence.
Of course there are many other ways to define some sort of positive bivariate
dependence. While the concept of independence is mathematically defined by
an equality relation, the violation of this equality by definition signifies depen-
dence. In Kotz et al.[14], seven different methods are evaluated. Amongst these
methods are

20
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Figure 4.1: Bivariate empirical distribution of X and Y

Covariance The covariance between the two variables is non-negative.
PQD X and Y are PQD (see Section 2.2).

Association (X,Y) are said to be associated if for all non-descreasing functions
Cov(p(X,Y), x(X,Y)) = 0.

Furthermore, four stronger concepts (left- and right-tail dependence, row- /
column-regression dependence, and total dependence of order s) of dependence
are reviewed. It is trivial that Association implies PQD, and that PQD implies
non-negativity of the covariance. Kotz et al.[14] carried out an extensive com-
puter simulation where they checked these seven concepts 3000 times for 3 x 3
matrices P, where the p;; = P(X = j,Y = ) are uniform random. In 16.8%
of the times the generated data were PQD, which coincides with the theoretic
probability of (Kotz et al.[14]). In all the simulations where PQD was ob-
tained, Association was also obtained (and of course the converse holds to0o).
So in practice, it seems that PQD and Association are almost the same and the
choice between them does not affect the inferences much.

4.2 Estimation using copulas and t-norms

To find nonparametric methods that take positive association into account, the
concepts of copula and t-norm may be helpful. An introduction into these con-
cepts is given on the basis of Schweizer and Sklar[28]. See also IMS Lecture
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Notes, Volume 28, ‘Distributions with fixed marginals and related topics’ ([20],
[21], [29]). We restricted the attention to distributions on the unit square be-
cause they can be made that way.

A function T from S x S onto S is called a binary operation on S. It is
called associative if T(T(x,y),z) =T(x,T(y,2)) Va,y,z in S. We shall restrict
ourselves to S = [0, 1).

Definition 4.1 (t-norm.) A triangular norm (or t-norm) is an associative
binary operation on [0, 1] that satisfies the axioms

(1) T(z1,91) < T(z2,y2) Vo1 < 22,91 < 2
(i) T(z,1)=T(1,z) =z

(iii) T'(z,y) =T(y,x)

i each point.

A t-norm may be visualized as a surface over the unit square that contains
the skew quadrilateral whose vertices are the coordinates (0,0, 0), (1,0,0), (1,1, 1),
and (0,1,0). The term triangular norm originates from this visualization.

Three common examples of t-norms are W, Il and M:

W(z,y) = max(z+y—1,0)
H(‘ra y) = 2y
M(z,y) = min(z,y)

For the joint distribution function H with marginals F' and G, there is a
function C' from the unit square onto the unit interval such that

H(z,y) = C(F(z),G(y)), Va,y (4.2)

This function is continuous when the marginal distributions of H are continuous.
Such a function C is called 2-copula, or 2-dimensional copula, ([28], [29]. Since
we are only interested in the bivariate case, we delete the prefix 2-). Copula’s
are 2-dimensional distribution functions with uniformly distributed marginals,
and they are often used in transformation models - just like as in Sections 3.3
and 3.4. We obtain different functions H when we use different functions C,
so we can incorporate initial ‘knowledge’ about the bivariate distribution by
choosing C.

It follows that each copula concerned with a distribution with continuous
marginals, is uniformly continuous on its domain. It also follows that the t-
norms M, II, and W are copulas, and for any copula C' we have W < C' < M.
That is why the t-norm W (M) is sometimes called the lower (upper) Fréchet
bound (Marshall[20] and Nelsen[21]). In general, a t-norm is a copula if and
only if it satisfies the Lipschitz condition

T(a,y)—T(,y) <a—b, a<b (4.3)



CHAPTER 4. NONPARAMETRIC DEPENDENCE CONCEPTS 23

For the proof we refer to Schweizer and Sklar[28], p. 86.

For continuous marginals, copulas are unique. Marshall[20] states that if H,
with discontinuous marginals, is PQD, then among the various copulas of H,
there is at least one that is PQD. He also states that C(F, G) has a nonnegative
correlation for all F' and G if and only if C' is PQD. This follows immediately
from Hoeffding’s lemma (see also Appendix A. So, when we want to incorporate
positive quadrant dependence of our two random variables, we need to take a
copula which itself is PQD too. After some basic calculations it can be seen
that W is negative quadrant dependent, IT is PQD (but not strict), and M is
strict PQD. When the assumption that F' and G are PQD is made, H(z,y) =
min(F(x),G(y)) is a nonparametric estimation that takes this assumption into
account.

4.3 The relationship between copulas and Chap-
ter 3

In Section 3.3 we have used bivariate normal distribution for estimating our
bivariate distribution, with p as the parameter describing dependence. This
corresponds to the copula

“Hw
(u,) / / .e[ A G ] dvdu (4.4)
27T 1 f

(see Formula 3.9) where C,, € C = {Cy|p € [~1,+1]}. In Section 3.4 the BVE-
distribution is used, corresponding to the copula

- u v 17 A~ 2"
Cy(u,v) = /0 /o (1+p) ‘exp {— . g(u +v) — ﬁmax(u,v) dudv (4.5)

where C'p €C = {C'p|p € [-1,41]}. So in both models, there is only one
parameter, p, on which the estimates depend (therefore these models are called
semiparametric models).

As was stated in the previous section, M ((z,y) = min(F(z),G(y)) is a
bivariate PQD distribution. This also explains our choice for the bivariate
exponential distribution of Mashall and Olkin (Formula (3.14) in Section 3.4).
Note that the copula M (z,y) = min(z, y) is similar to the part of Formula (3.14)
describing the dependence between X and Y (since (X,Y’) is transformed into

(e=Y,e™") the maximum must be taken instead of the minimum).
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4.4 Ordening the data to obtain PQD

Let us now think of the case where a distribution function H on [0,1] x [0, 1]
is given, with marginals uniform, but not satisfying the requirement of PQD
(H(xz,y) > xy, Vx,y). The goal is to find a modification J of H such that the
marginals remain uniform, but that the PQD-requirement is satisfied. We want
to find the J that is ‘as close as possible’ to H, according to some specified
dissimilarity measure.

The data are transformed in some way to a m X n matrix, say M. For
this matrix > 3;"; m;; = n and Y 7, m;; = n (‘uniform marginals’) hold, but
Yo imy > ay, Yo,y € {1,...,n} (‘PQD’) does not hold. Now we want
a modification IV of M such that summation over each row and column still
gives n, and that Y. | > 7 ny; > zy, Va,y € {1,...,n}. N is made PQD by
tranfering some value, say a, from element n; , to n;; and transfering a from n;
to n; k. This process is repeated several times for specific values of a, 7, j, k, and
I coming from a specified algoritm. Scarsini[26] explains such an algoritm, using
the earlier mentioned copula M (x,y) = min(z,y), but this transformation is not
‘minimal’. The goal is to find a transformation IV of M such that the difference
between N and M is minimal, conditional to N being PQD. After such a matrix
N has been composed, it has to be transformed back to a bivariate distribution.
Some smoothing methods have to be used, but this brings the complication that
the smoothened distribution following from N might not be PQD. Hopefully,
we eventually obtain a bivariate distribution function J that satisfies the PQD
requirement and is ‘close’ to our original distribution function H.

At the moment, we can not solve this problem. A good investigation of
related literature is needed before we might be able to estimate the bivariate
density according to the nonparametric method described above.



Appendix A

Proof of Lemma 2.4

That condition (i) is equivalent to (i¢) is obvious, so we only have to proof
that (7) (and thus also (ii)) are equivalent to (ii7). As already stated in section
2.2, PQD is invariant under increasing transformations. The same holds thus if
decreasing functions are applied to both coordinates. Remaining for us to prove
is
(X,Y)is PQD < cov(r(X),s(Y)) > 0, Vr, s nondecreasing

Since cov(X,Y) = E(XY) — EX EY, stating that cov(X,Y) > 0 is equivalent
to stating that E(XY) > EXEY. The proof was found in Lehmann([16], p.
1139-1140), who made use of the following lemma of Hoeffding

Lemma A.1 If H denotes the joint distribution of X and Y, then
E(XY)-EXEY = / / [H(z,y) — H(x,00)H (00, y)] dady (A1)

provided the expectations on the left hand side ezist.

Proof. Let (X1,Y1), (X2,Ys) be independent and each distributed according
to H. Then

2[E(X1Y1) — EX1EYi] = E[(X; — Xo)(Y; — Y3)] =

E/ / [Lwsxiy = Yusea)] [Losriy = Lpsyyy] dudv (A2)

The first step is in the line of analogous steps made in Section 2.3. Since we
assume that E|XY|,E|X|,E|Y| are finite, we can take the expectation under
the integration sign. After a few simple calculations we obtain twice the right
hand side of (A.1), which completes the proof.

That PQD of (X,Y) implies cov(X,Y) > 0 follows immediately from this
lemma. Suppose now that the covariance is zero, and that (X,Y") is PQD. This
means that H(z,y) = H(x,00)H (00,y) (except possibly on a set of Lebesque
measure zero). Cumulative distribution functions are continuous on the right,

25
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and this means that if two distributions agree a.e. w.r.t. Lebesgue measure,
they must agree everywhere. Thus X and Y must be independent, and this
completes the proof.
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