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were not free of error and used some ad hoc ways to improve 
their measurement. For instance, Hipparchus used the middle of 
the range of measurements. At the end of the eighteenth century, 
Thomas Simpson and Pierre Laplace both developed a distribution 
for the error. Other ‘bell curves’ have also been considered.

Looking at Figure 1, these curves have a few things in common: 
(i) small errors are more likely than large errors, (ii) the distribution 
is symmetrical around 0 (or, in general, around n): the probability 
of an error of value f is equivalent to that of value f- . These are 
very sensible properties for an error distribution.

Probably the most-used statistical distribution is the normal dis-
tribution, also known as the Gaussian distribution, after its ‘inven-
tor’, Carl Friedrich Gauss. This distribution, classified with mean n 
and variance v has density
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which has the familiar bell shape (see Figure 1).
Normality of residuals is the standard assumption when per-

forming basic statistical analyses such as the t-test, ANOVA or 
linear regression. The normal distribution appears in statistical 
mechanics. The normal distribution appears as approximating dis-
tribution of the binomial, Poisson, l2 and Student-t-distribution. 
Furthermore, the Central Limit Theorem dictates that whatever ex-
otic shape the population distribution has, the distribution of the 
sample mean will always converge to a normal distribution as the 
sample size goes up.

De Moivre
Thus, normality is everywhere. But why does this distribution has 
the shape it has? For that, we have to look at the history of the 
normal distribution, which is nicely outlined in [5]. The first in-
stances of the normal distribution, attributed to De Moivre [1] in 
the early eighteenth century, occur as the limiting distribution of 
the binomial distribution.

The normal distribution, however, is more often used as an 
error curve. Even the old Greeks realised that their measurements 
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Figure 1 Four bell curves: the standard normal distribution (black), the Cauchy distributi-
on (blue), Simpson’s distribution (green) and Laplace’s distribution (red).
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Gauss
In 1809, Gauss derived ‘his’ curve by extending these two proper-
ties with: (iii) the error distribution should be differentiable (thus, 
excluding Simpson’s and Laplace’s suggestions), (iv) having several 
measurements of the same quantity, the most likely value of the 
quantity being measured is their average.

Strikingly, these four properties alone are sufficient to reach 
the normal distribution: no other distribution satisfies these four 
properties.

Proof
Gauss provided a remarkably elegant proof for this claim. Trans-
lated into ‘modern terminology’, the essence of the proof is as 
follows (based on [5, pp. 104–105]).

Let ( )xz  be the probability density function of the random error, 
let n be the true (unknown) value of the measured quantity, and 
let n independent observations yield estimates , ,x xn1 f . Proper-
ty (i) implies ( )xz  is maximal at x 0= , and property (ii) implies 
( ) ( )x xz z- = . Using property (iii) we can define ( ) ( )/ ( )'f x x xz z= , 

then ( ) ( )f x f x- =- .
Since we assume independence of the errors ( )xi n- , the joint 

density of the n errors is given by
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Property (iv) states that the sample mean x xn ii

n1
1= -r /  is the max-

imum likelihood estimate, which means that U is maximised at the 
value xr: /( | )x 02 2n nU = =r . Thus,
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Using our function ( )f x , we can write this as

( ) ( ) ( ) .f x x f x x f x x 0n1 2 g- + - + + - =r r r
Suppose now that x x1 =  and x x x x nNn2 3 g= = = = -  for arbi-
trary values x and N. Then the formula above can be rewritten as

(( ) ) ( ) ( ) .f n N n f N1 1- = -

From the theory of differential equations, we know that this (recall 
the continuity of f ) implies that for some k R! : thus, ( )/ ( )' x xz z = 
kx. Integration with respect to x provides
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As ( )xz  must have its maximum at 0, k must be negative. Substi-
tuting /k 1 2v=- , we obtain ( ) ex /( )x 22 2
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thus concluding our proof.
Gauss also provided a second proof, based on the least-squares 

properties. As for a normal distribution, the least squares estima-
tor and maximum likelihood estimator coincide, this proof follows 
much of the same reasoning.

Laplace
It would only have taken a small twist of fate, and we would have 
known the Gauss distribution as the Laplace distribution. Only a 
year after Gauss’ publication (and based on work he did some 25 
years earlier), Laplace published [3] a mathematical underpinning 
of the normal distribution based on the central limit theorem. In 
what is now known as the De Moivre–Laplace theorem, he proved 
that, if ( , )Binx n pn +  then
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For this reason, statisticians such as Karl Pearson called what 
we now call the normal distribution the Gauss–Laplace distribution 
(unfortunately ignoring the work by De Moivre nearly a century 
earlier). Pearson propagated against the use of the terminology 
‘normal distribution’ as this might “lead people to believe all other 
distributions of frequency are in one sense or another abnormal” 
[4]. Given the vast statistical heritage of Pearson, we don’t have 
to feel sorry that this advice of his hasn’t been followed. Given 
the sheer range of applications, no other distribution than that 
by De Moivre, Gauss and Laplace would be worthy of the name 
‘normal’.  s
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